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Why do we need time-varying weights?
In our cloning approach, people get “censored” when they
deviate from their assigned treatment strategy.

This censoring happens at different times for different
people

We have to weight the uncensored observations by the
inverse probability of remaining uncensored up to that
time point
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Why time-varying weights?
The probability of remaining uncensored changes over time as more people deviate
from the strategy.

Consider our “treat at week 12” strategy:

Week 8: Nearly everyone still following strategy (high probability of remaining
uncensored)

Week 11: Some people already treated early (lower probability)

Week 15: Many people have deviated (much lower probability for those remaining)

People contributing data at week 15 must be weighted more heavily because they
represent not just themselves, but also those who would have had similar outcomes
but were censored earlier.
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Data example: two individuals
Let’s follow two people assigned to “treat at week 12” strategy:

ID Maternal
age

Bleeding starts Exposed Adheres to strategy Outcome

101 28 10 Never No Censored

102 32 10 Week
12

Yes Yes

Person 101: Never treated → censored at target week 12

Person 102: Treated at week 12 → follows strategy, contributes outcome data

Person 102 must be weighted to represent both themselves and people like Person
101 who would have had similar outcomes
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Cox regression approach (exercise 7)
Data structure: Interval survival format

Each person contributes intervals where censoring could
occur

Variables: time_in, time_out, censor (event indicator)

Person 101 is censored in interval (10, 12]. Person 102 has
the outcome in interval (12, 16.8].

# A tibble: 5 × 7
     ID time_in time_out maternal_age bleeding censor outcome
  <dbl>   <dbl>    <dbl>        <dbl>    <dbl>  <dbl>   <dbl>
1   101       8     10             28        0      0       0
2   101      10     12             28        1      1       0
3   102       8     10             32        0      0       0
4   102      10     12             32        1      0       0
5   102      12     16.8           32        1      0       1
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Cox regression model equation
The Cox model estimates the hazard of censoring at time :

Where:

 = hazard of censoring at time  given covariates 

 = baseline hazard (unspecified)

 = log hazard ratios for predictors of censoring

𝑡

(𝑡|𝑋) = (𝑡) exp( + + …)ℎ𝑐 ℎ𝑐0 𝛽1𝑋 1 𝛽2𝑋 2

(𝑡|𝑋)ℎ𝑐 𝑡 𝑋

(𝑡)ℎ𝑐0
𝛽
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Survival probability: remaining
uncensored

While the baseline hazard  is not specified in the model, it must ultimately be
estimated to compute survival probabilities. The survival package in R does this
automatically using the Breslow estimator.

With interval data we will actually get interval survival estimates and need to
multiply them together to get the cumulative survival

Weight:  = inverse probability of remaining uncensored

(𝑡|𝑋) = exp(− (𝑢|𝑋)𝑑𝑢)𝑆 𝑐 ∫ 𝑡

0 ℎ𝑐

(𝑡)ℎ𝑐0

𝑤(𝑡) = 1
(𝑡|𝑋)𝑆 𝑐

7



Weight calculation: cox approach
Step 1: Fit Cox model for censoring in each clone

Step 2: Extract interval survival probabilities

mod_cens <- coxph(Surv(time_in, time_out, censor) ~ maternal_age + bleeding1
                  data = clone_long, subset = outcome == 0)2

clone_weighted <- clone_long |>1
  mutate(.fitted = predict(mod_cens, type = "survival")) |>2
  group_by(ID) |>3
  arrange(time_in) |>4
  mutate(5
    # interval survival probabilities6
    p_uncens = lag(.fitted, default = 1),7
    # cumulative probability of remaining uncensored8
    p_uncens_cumulative = cumprod(p_uncens),9
    # inverse probability weight10
    weight = 1 / p_uncens_cumulative11
  )12
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Pooled logistic regression approach
(exercise 8)
Data structure: Long format with weekly observations

Each person contributes one row per week at risk (or whatever time scale)

Variables: week (every one), censor_now (0/1 for censored this week)

# A tibble: 13 × 6
      ID  week maternal_age bleeding censor_now outcome_now
   <dbl> <dbl>        <dbl>    <dbl>      <dbl>       <dbl>
 1   101     8           28        0          0           0
 2   101     9           28        0          0           0
 3   101    10           28        1          0           0
 4   101    11           28        1          1           0
 5   102     8           32        0          0           0
 6   102     9           32        0          0           0
 7   102    10           32        1          0           0
 8   102    11           32        1          0           0
 9   102    12           32        1          0           0
10   102    13           32        1          0           0
11   102    14           32        1          0           0
12   102    15           32        1          0           0
13   102    16           32        1          0           1
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Pooled logistic regression model equation
The logistic model estimates the probability of censoring in week :

Where: -  = indicator of censoring in week  -  = week-specific intercepts (baseline
hazard) -  = log odds ratios for predictors of censoring

Survival probability:

Weight:  = inverse probability of remaining uncensored

𝑡

logit(𝑃 ( = 1| = 0, )) = + + + …𝐶𝑡 𝐶𝑡−1 𝑋 𝑡 𝛼𝑡 𝛽1𝑋 1𝑡 𝛽2𝑋 2𝑡

𝐶𝑡 𝑡 𝛼𝑡

𝛽

(𝑡|𝑋) = (1 − 𝑃 ( = 1| = 0, ))𝑆 𝑐 ∏
𝑘=1

𝑡

𝐶𝑘 𝐶𝑘−1 𝑋 𝑘

𝑤(𝑡) = 1
(𝑡|𝑋)𝑆 𝑐
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Weight calculation: pooled logistic
approach
Step 1: Fit logistic model for weekly censoring probability

Step 2: Calculate cumulative probability of remaining uncensored

mod_cens <- glm(censor_now ~ factor(week) + maternal_age + bleeding,1
                data = clone_long_weekly, family = binomial())2

clone_weighted <- clone_long_weekly |>1
  mutate(2
    # probability of censoring this week3
    p_censor_week = predict(mod_cens, type = "response"),4
    # probability of remaining uncensored this week5
    p_uncens_week = 1 - p_censor_week6
  ) |>7
  group_by(ID) |>8
  mutate(9
    # cumulative probability of remaining uncensored10
    p_uncens_cumulative = cumprod(p_uncens_week),11
    # inverse probability weight12
    weight = 1 / p_uncens_cumulative13
  )14
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Comparison of approaches
Aspect Cox regression Pooled logistic

Data size Generally smaller
(interval format)

Larger (weekly
format)

Baseline
hazard

Not specified Must be modeled

Flexibility Semi-parametric Fully parametric

Time
modeling

Automatic Manual (e.g., splines,
indicators)

Both produce valid inverse probability weights when models
are correctly specified.
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Practical considerations
Time scale:

What time scale makes most sense for your data / won’t be overly computationlly
intensive?

Model checking:

Make sure things look reasonable

Pooled logistic: Check fit of baseline hazard function

Extreme weights:

Both approaches can produce very large weights, particularly when multiplied for
long time periods

Consider weight truncation or stabilization

Examine distribution of weights before outcome analysis
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