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Why do we need time-varying weights?

In our cloning approach, people get “censored” when they
deviate from their assigned treatment strategy.

e This censoring happens at different times for different
people

 \We have to weight the uncensored observations by the
inverse probability of remaining uncensored up to that
time point



Why time-varying weights?
The probability of remaining uncensored changes over time as more people deviate

from the strategy.

Consider our “treat at week 12” strategy:

o Week 8: Nearly everyone still following strategy (high probability of remaining
uncensored)

e Week 11: Some people already treated early (lower probability)

e Week 15: Many people have deviated (much lower probability for those remaining)

People contributing data at week 15 must be weighted more heavily because they

represent not just themselves, but also those who would have had similar outcomes
but were censored earlier.



Data example: two individuals

Let’s follow two people assigned to “treat at week 12” strategy:

ID Maternal Bleedingstarts Exposed Adherestostrategy Outcome

age
101 28 10 Never No Censored
102 32 10 Week Yes Yes
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e Person 101: Never treated — censored at target week 12

e Person 102: Treated at week 12 — follows strategy, contributes outcome data

Person 102 must be weighted to represent both themselves and people like Person
101 who would have had similar outcomes



Cox regression approach (exercise 7)

Data structure: Interval survival format

e Each person contributes intervals where censoring could
occur

e Variables: time_in, time out, censor (event indicator)

# A tibble: 5 x 7
ID time_in time_out maternal_age bleeding censor outcome

<dbl> <dbl> <db 1> <db 1> <dbl> <dbl> <dbl>
1 101 8 10 28 0 0 0
2 101 10 12 28 1 1 0
3 102 8 10 32 0 0 0
4 102 10 12 32 1 0 0
5 102 12 16.8 32 1 0 1

Person 101 is censored in interval (10, 12]. Person 102 has
the outcome in interval (12, 16.8].



Cox regression model equation

The Cox model estimates the hazard of censoring at time ¢:
he(t|X) = heo(t) exp(B1 X1 + X2 +..0)

Where:

e h.(t|X) =hazard of censoring at time ¢ given covariates X
e h.0(t)=baseline hazard (unspecified)

* 3 =log hazard ratios for predictors of censoring



Survival probability: remaining

uncensored
Sc(t1X) = exp(~J he(u|X)du)

e While the baseline hazard h(t) is not specified in the model, it must ultimately be
estimated to compute survival probabilities. The survival package in R does this
automatically using the Breslow estimator.

o With interval data we will actually get interval survival estimates and need to
multiply them together to get the cumulative survival

Weight: w(t) = SC(1|X) = inverse probability of remaining uncensored



Weight calculation: cox approach

Step 1: Fit Cox model for censoring in each clone

mod_cens <- coxph(Surv(time_in, time_out, censor) ~ maternal_age + bleedinc
data = clone_long, subset = outcome == 0)

Step 2: Extract interval survival probabilities

clone_weighted <- clone_long |>
mutate(.fitted = predict(mod_cens, type
group_by(ID) |>
arrange(time_in) |>
mutate(
# interval survival probabilities
p_uncens = lag(.fitted, default = 1),
# cumulative probability of remaining uncensored
p_uncens_cumulative = cumprod(p_uncens),
# inverse probability weight
weight = 1 / p_uncens_cumulative

"survival")) |>



Pooled logistic regression approach
(exercise 8)

Data structure: Long format with weekly observations

e Each person contributes one row per week at risk (or whatever time scale)
e Variables: week (every one), censor_now (0/1 for censored this week)

# A tibble: 13 x 6
ID week maternal_age bleeding censor_now outcome_now

<db1l> <dbl> <db1> <db1> <db 1> <db1l>
1 101 8 28 0 0 0
2 101 9 28 0 0 0
3 101 10 28 1 0 0
4 101 11 28 1 1 0
5 102 8 32 0 0 0
6 102 9 32 0 0 0
7 102 10 32 1 0 0
8 102 11 32 1 0 0
9 102 12 32 1 0 0
10 102 13 32 1 0 0
11 102 14 32 1 0 0
12 102 15 32 1 0 0
13 102 16 32 1 0 1



Pooled logistic regression model equation

The logistic model estimates the probability of censoring in week ¢:
logit(P(C; = 1|Cim1 =0,Xy)) = + fi1 X 11 + o Xor + ...

Where: - C; = indicator of censoring in week t - a; = week-specific intercepts (baseline
hazard) - 5 = log odds ratios for predictors of censoring

Survival probability:
t
Se(t1X) = [ [(1 = P(Ck = 1]Ct =0.X )
k=1

Weight: w(t) = Sc(}lX) = inverse probability of remaining uncensored
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Weight calculation: pooled logistic
approach

Step 1: Fit logistic model for weekly censoring probability

mod_cens <- glm(censor_now ~ factor(week) + maternal_age + bleeding,
data = clone_long_weekly, family = binomial())

Step 2: Calculate cumulative probability of remaining uncensored

clone_weighted <- clone_long_weekly |>

mutate(
# probability of censoring this week
p_censor_week = predict(mod_cens, type = "response"),

# probability of remaining uncensored this week
p_uncens_week = 1 - p_censor_week

) |>

group_by(ID) |>

mutate(
# cumulative probability of remaining uncensored
p_uncens_cumulative = cumprod(p_uncens_week),
# inverse probability weight
weight = 1 / p_uncens_cumulative
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Comparison of approaches

Aspect Cox regression Pooled logistic

Datasize Generally smaller Larger (weekly
(interval format) format)

Baseline  Not specified Must be modeled

hazard

Flexibility Semi-parametric Fully parametric

Time Automatic Manual (e.g., splines,

modeling indicators)

Both produce valid inverse probability weights when models
are correctly specified.
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Practical considerations

Time scale:

e What time scale makes most sense for your data / won't be overly computationlly
intensive?

Model checking:

e Make sure things look reasonable

e Pooled logistic: Check fit of baseline hazard function

Extreme weights:

e Both approaches can produce very large weights, particularly when multiplied for
long time periods

e Consider weight truncation or stabilization

e Examine distribution of weights before outcome analysis
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